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LCD
Limits : L 1x3 13%x° 135%7
Theorems of Limits : (X) sSin X = X+E.T+E Z ?'FEZE 74‘ ......
If f(x) and g(x) are two functions, then
Q) )l(i_lg[f(x)ig(x)] = )l(i_lgf(x) + iii)llg(x) (xi) tan'x= {x—§x3 -i—%x5 — e }
(i) ){i‘j}l[f(x)g(x)] - )l(ig;f(x) ’ fﬂ;g(x) Some important Limits :
lim £ (x) (1) )l(im sinx =0
(iii) lim )12 X4 if limg(x) #0 >
x-a| g(X) limg(x) x-a (i) limcosx=1
X—a x—0
@iv) lim[kf(x)] =k lim f(x), where k is constant. sin x
X—a X—a (iii) lim =1= lim
x>0 X x—0 §in X
(v) limyf(x) = \/lim f(x) t
e . (iv) lim——X =1= lim
. p/q x—>0 X x—0 tan X
(vi) lirn|f(x)|p/q = (}(lglf(x)j , where p and q are loo(l +
xoa W lim legd+x) _,
™)
Integers. x—0 X
Some important expansions : i) lime* =1
X3 X5 X7 x—0
(i) sinx={XxX-——+———+ e* —1
35t 7! (vii) lim =1
x—>0 X
2 4 6
. x° x7 X X _
(i) cosx= {1—?+?—E+...} (viii) )1(12(1) a < ! =log.a
. . Xn _an n—1
(ili) sinhx= {x +—+—+ } (ix) lim =na
Xx—a X—a
: 1Y . 1
(iv) coshx = {1+—+ ' ..oo} ) }E&(”gj se= xlﬂ?w(”gj
] (xi) 1irr(1)(1+x)”" =e
X—>
(v) tanx= X+X—+2L+....
3 15 )
(xii) lim[1+—j =¢
2 3 4 X—>0 X
i Iy 2 X X
(vi) log(l +x)= {x A +} o e ifasl
(xiii) lima" = 0. if )
X2 X3 X—>0 , 1fa<
(vii) e* = 1+x+7+?+.... ie.a”=o,ifa>1landa”=0,ifa<1
2 (xiv) hmw =
(viii)a* = {1+xloga+7(loga)2 +} o X
' P -1
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(ix) 1-x)"={l+x+x>+x+... } x=0 X x-0 X
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(xvi) limsin ™' x =sin'a, [a| <1
X—a

-1

(xvii) limcos™ x = cos'a, [a| < 1

X—a

ceey 1s - —1
(xviii) limtan™' x =tan 'a,—0<a<ow
X—a

(xix) limlog,x =1
X—>€

. l-cosx 1
1 = _
) lim—2 2
Let lim f(x) = ¢ and l1m g(x) =m, then
X—a

(xxi) lim(f(x))e®) =/

(xxi)If f(x) < g(x) for every x in the deleted
neighbourhood (nbd) of a, then lim f(x) < lim g(x).
X—a X—a

(xxiii) If f(x) < g(x) < h(x) for every x in the deleted nbd of
aand limf(x) = /= limh(x), then lim g(x) = /.
X—a X—a X—a

(xxiv) lim fog(x) = f(lim g(x)) = f(m)

In particular (a) lim logf(x)= 10g(1im f(x)j =log ¢
X—a X—a

lim f(x) ,
(b) lime'™ = e =¢f
X—a

oo, then limL =0.

(xxv) If limf(x) =+ or—
x—a x—a (x)

Evaluation of Limits (Working Rules) :

By factorisation : To evaluate lim 6C)

xa y(x)
both ¢(x) and wy(x), if possible, then cancel the
common factor involving a from the numerator and
the denominator. In the last obtain the limit by
substituting a for x.

, factorise

Evaluation by substitution : To evaluate lim f(x),
X—a

put x = a + h and simplify the numerator and
denominator, then cancel the common factor
involving h in the numerator and denominator. In the
last obtain the limit by substituting h = 0.

By L — Hospital's rule : Apply L-Hospital's rule to

the form % or 2.

lim ——= e _ lim e im ()
x—a g(x) x—a g (x) x—a g“(x)

By using expansion formulae : The expansion
formulae can also be used with advantage in
simplification and evaluation of limits.

By rationalisation In case if numerator or
denominator (or both) are irrational functions,
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rationalisation of numerator or denominator (or both)
helps to obtain the limit of the function.
Continuity :

f(x) is continuous at x = a if lim f(x)exists and is
X—a

equal to f(a) i.e. if lim f(x)=f(a)= lim f(x).
x—a~ x—a*

Discontinuous functions : A function f is said to be
discontinuous at a point a of its domain D if is not
continuous there at. The point a is then called a point
of discontinuity of the function. The discontinuity
may arise due to any of the following situations:

(a) lim f(x)or lim f(x) of both may not exist.
X—a+ X—a—

(b) lim f(x)as well as lim f(x) may exist but are
X—a+ X—a—

unequal.

(c) lim f(x) as well as lim f(x) both may exist but
x—a+ Xx—a—

either of the two or both may not be equal to f(a).

We classify the point of discontinuity according to
various situations discussed above.

Removable discontinuity : A function f is said to
have removable discontinuity at x = a if

lim f(x)= hm f(x) but their common value is not
X—a—

equal to f(a). Such a discontinuity can be removed by
assigning a suitable value to the function f at x = a.

Discontinuity of the first kind : A function f is said
to have a discontinuity of the first kind at x = a if

lim f(x) and hm f(x) both exist but are not equal.
X—a-—

f is said to have a discontinuity of the first kind from

the left at x = a if lim f(x) exists but not equal to
X—a-—

f(a). Discontinuity of the first kind from the right is
similarly defined.

Discontinuity of second kind : A function f is said
to have a discontinuity of the second kind at x = a if

neither lim f(x) nor hm f(x) exists.
X—a—

f if said to have discontinuity of the second kind from

the left at x =a if lim f(x) does not exist.
X—a—

Similarly, if lim f(x) does not exist, then f is said to
x—a+

have discontinuity of the second kind from the right
at x = a.
Differentiability :
f(x) is said to be differentiable at x =aif R"=L"
e Lt fla+h)-f(a) _ Lt f(a—h)—f(a)
h—0 h h—0 —-h
Note : We discuss R, L or R’, L” at x = a when the

function is defined differently for x > a or x < a and
atx =a.





